前言:
想提高Java开发,了解jvm是必不可少的。它让开发者了解他们的代码,jvm是如何变异与运行。深入了解jvm:会让你的代码写的高效,逐步成为大神
下面介绍jvm的基本知识
>>数据类型
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。
基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。
“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
基本类型包括:byte,boolean(1 byte),short,char(2 bytes),int,float(4 bytes),long,double(8 bytes),returnAddress(不确定是否是基本类型)
引用类型包括:类类型,接口类型和数组。
>>堆与栈
栈是运行时的单位,而堆是存储的单位。
栈解决程序的运行问题,即程序如何执行,或者说如何处理数据;堆解决的是数据存储的问题,即数据怎么放、放在哪儿。
在Java中一个线程就会相应有一个线程栈与之对应,这点很容易理解,因为不同的线程执行逻辑有所不同因此需要一个独立的线程栈。而堆则是所有线程共享的。栈因为是运行单位,因此里面存储的信息都是跟当线程(或程序)相关信息的。包括局部变量、程序运行状态、方法返回值等等;而堆只负责存储对象信息。
堆中存的是对象。栈中存的是基本数据类型和堆中对象的引用。
堆和栈中,栈是程序运行最根本的东西。程序运行可以没有堆,但是不能没有栈。而堆是为栈进行数据存储服务,说白了堆就是一块共享的内存。不过,正是因为堆和栈的分离的思想,才使得Java的垃圾回收成为可能。
Java中,栈的大小通过-Xss来设置,当栈中存储数据比较多时,需要适当调大这个值,否则会出现java.lang.StackOverflowError异常。常见的出现这个异常的是无法返回的递归,因为此时栈中保存的信息都是方法返回的记录点。
>>Java中的参数传递时传值呢?还是传引用?
要说明这个问题,先要明确两点:
不要试图与C进行类比,Java中没有指针的概念。
程序运行永远都是在栈中进行的,因而参数传递时,只存在传递基本类型和对象引用的问题。不会直接传对象本身。
明确以上两点后。Java在方法调用传递参数时,因为没有指针,所以它都是进行传值调用(这点可以参考C的传值调用)。因此,很多书里面都说Java是进行传值调用,这点没有问题,而且也简化的C中复杂性。
传值传引用都不够准确,可以理解成传引用变量的副本值。引用变量分为字面值引用变量(即基本数据类型引用变量)和对象引用变量 。 详情需要了解数据类型使用机制和堆栈的概念:http://www.cnblogs.com/alexlo/archive/2013/02/21/2920209.html
对象引用变量:即普通java对象的引用变量 ,如 String a = "abc" , a就是对象引用变量。java 是不能直接操作对象的,只能通过对“对象引用的操作”来操作对象。而对象的引用的表示就是对象变量。可以多个对象引用变量指向同一个对象。 字面值引用变量:即普通数据类型的引用变量 ,如 int b = 1 , b就是字面值引用变量。可以有多个字面值引用变量指向同一字面值,但其中一个引用修改字面值,不会影响另一个引用字面值,这点要与对象引用区别开。
>>Java对象的大小
基本数据的类型的大小是固定的,Java基本数据类型与位运算,这里就不多说了。对于非基本类型的Java对象,其大小就值得商榷。在Java中,一个空Object对象的大小是8byte,这个大小只是保存堆中一个没有任何属性的对象的大小。看下面语句:
1 | Object ob = new Object(); |
1 2 3 4 5 | Class NewObject { int count; boolean flag; Object ob; } |
>>引用类型
对象引用类型分为强引用、软引用、弱引用和虚引用。 强引用:就是我们一般声明对象时虚拟机生成的引用,强引用环境下,垃圾回收时需要严格判断当前对象是否被强引用,如果被强引用,则不会被垃圾回收。 软引用:软引用一般被做为缓存来使用。与强引用的区别是,软引用在垃圾回收时,虚拟机会根据当前系统的剩余内存来决定是否对软引用进行回收。如果剩余内存比较紧张,则虚拟机会回收软引用所引用的空间;如果剩余内存相对富裕,则不会进行回收。换句话说,虚拟机在发生OutOfMemory时,肯定是没有软引用存在的。 弱引用:弱引用与软引用类似,都是作为缓存来使用。但与软引用不同,弱引用在进行垃圾回收时,是一定会被回收掉的,因此其生命周期只存在于一个垃圾回收周期内。 强引用不用说,我们系统一般在使用时都是用的强引用。而“软引用”和“弱引用”比较少见。他们一般被作为缓存使用,而且一般是在内存大小比较受限的情况下做为缓存。因为如果内存足够大的话,可以直接使用强引用作为缓存即可,同时可控性更高。因而,他们常见的是被使用在桌面应用系统的缓存。JVM的生命周期
一、首先分析两个概念JVM实例和JVM执行引擎实例 (1)JVM实例对应了一个独立运行的java程序,它是进程级别。 (2)JVM执行引擎实例则对应了属于用户运行程序的线程,它是线程级别的。二、JVM的生命周期
(1)JVM实例的诞生:当启动一个Java程序时,一个JVM实例就产生了,任何一个拥有public static void main(String[] args)函数的class都可以作为JVM实例运行的起点。 (2)JVM实例的运行 main()作为该程序初始线程的起点,任何其他线程均由该线程启动。JVM内部有两种线程:守护线程和非守护线程,main()属于非守护线程,守护线程通常由JVM自己使用,java程序也可以标明自己创建的线程是守护线程。 (3)JVM实例的消亡:当程序中的所有非守护线程都终止时,JVM才退出;若安全管理器允许,程序也可以使用Runtime类或者System.exit()来退出。JVM的体系结构
一、JVM的内部体系结构分为三部分,
(1)类装载器(ClassLoader)子系统 作用: 用来装载.class文件 (2)执行引擎 作用:执行字节码,或者执行本地方法 (3)运行时数据区 方法区,堆,java栈,PC寄存器,本地方法栈JVM类加载器
一、 JVM将整个类加载过程划分为了三个步骤:
(1)装载 装载过程负责找到二进制字节码并加载至JVM中,JVM通过类名、类所在的包名通过ClassLoader来完成类的加载,同样,也采用以上三个元素来标识一个被加载了的类:类名+包名+ClassLoader实例ID。 (2)链接 链接过程负责对二进制字节码的格式进行校验、初始化装载类中的静态变量以及解析类中调用的接口、类。在完成了校验后,JVM初始化类中的静态变量,并将其值赋为默认值。最后一步为对类中的所有属性、方法进行验证,以确保其需要调用的属性、方法存在,以及具备应的权限(例如public、private域权限等),会造成NoSuchMethodError、NoSuchFieldError等错误信息。 (3)初始化 初始化过程即为执行类中的静态初始化代码、构造器代码以及静态属性的初始化,在四种情况下初始化过程会被触发执行:调用了new;反射调用了类中的方法;子类调用了初始化;JVM启动过程中指定的初始化类。二、JVM两种类装载器包括:启动类装载器和用户自定义类装载器:
启动类装载器是JVM实现的一部分,用户自定义类装载器则是Java程序的一部分,必须是ClassLoader类的子类。 主要分为以下几类: (1) Bootstrap ClassLoader 这是JVM的根ClassLoader,它是用C++实现的,JVM启动时初始化此ClassLoader,并由此ClassLoader完成$JAVA_HOME中jre/lib/rt.jar(Sun JDK的实现)中所有class文件的加载,这个jar中包含了java规范定义的所有接口以及实现。 (2) Extension ClassLoader JVM用此classloader来加载扩展功能的一些jar包 (3) System ClassLoader JVM用此classloader来加载启动参数中指定的Classpath中的jar包以及目录,在Sun JDK中ClassLoader对应的类名为AppClassLoader。 (4) User-Defined ClassLoader User-DefinedClassLoader是Java开发人员继承ClassLoader抽象类自行实现的ClassLoader,基于自定义的ClassLoader可用于加载非Classpath中的jar以及目录三、ClassLoader抽象类提供了几个关键的方法:
(1)loadClass 此方法负责加载指定名字的类,ClassLoader的实现方法为先从已经加载的类中寻找,如没有则继续从parent ClassLoader中寻找,如仍然没找到,则从System ClassLoader中寻找,最后再调用findClass方法来寻找,如要改变类的加载顺序,则可覆盖此方法 (2)findLoadedClass 此方法负责从当前ClassLoader实例对象的缓存中寻找已加载的类,调用的为native的方法。 (3) findClass 此方法直接抛出ClassNotFoundException,因此需要通过覆盖loadClass或此方法来以自定义的方式加载相应的类。 (4) findSystemClass 此方法负责从System ClassLoader中寻找类,如未找到,则继续从Bootstrap ClassLoader中寻找,如仍然为找到,则返回null。 (5)defineClass 此方法负责将二进制的字节码转换为Class对象 (6) resolveClass 此方法负责完成Class对象的链接,如已链接过,则会直接返回。四、简单的classLoader例子
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | /* * 重写ClassLoader类的findClass方法,将一个字节数组转换为 Class 类的实例 */ public Class<?> findClass(String name) throws ClassNotFoundException { byte [] b = null ; try { b = loadClassData(AutoClassLoader.FormatClassName(name)); } catch (Exception e) { e.printStackTrace(); } return defineClass(name, b, 0 , b.length); } /* * 将指定路径的.class文件转换成字节数组 */ private byte [] loadClassData(String filepath) throws Exception { int n = 0 ; BufferedInputStream br = new BufferedInputStream( new FileInputStream( new File(filepath))); ByteArrayOutputStream bos= new ByteArrayOutputStream(); while ((n=br.read())!=- 1 ){ bos.write(n); } br.close(); return bos.toByteArray(); } /* * 格式化文件所对应的路径 */ public static String FormatClassName(String name){ FILEPATH= DEAFAULTDIR + name+ ".class" ; return FILEPATH; } /* * main方法测试 */ public static void main(String[] args) throws Exception { AutoClassLoader acl = new AutoClassLoader(); Class c = acl.findClass( "testClass" ); Object obj = c.newInstance(); Method m = c.getMethod( "getName" , new Class[]{String. class , int . class }); m.invoke(obj, "你好" , 123 ); System.out.println(c.getName()); System.out.println(c.getClassLoader()); System.out.println(c.getClassLoader().getParent()); } |